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Sir Andrew Huxley, 1974

J. Physiol. (1976), 263, pp. 1-21
With 7 text-figures

Printed in Great Britain

CHANCE AND DESIGN IN ELECTROPHYSIOLOGY:
AN INFORMAL ACCOUNT OF CERTAIN EXPERIMENTS
ON NERVE CARRIED OUT BETWEEN 1934 AND 1952

By A. L. HODGKIN

From the Physiological Laboratory, University of Cambridge,
Downing Street, Cambridge C B2 3EG
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Fig. 2.
ACTION POTENTIAL RECORDED BETWEEN INSIDE AND
oUTsIDE OF AXON. TIME MARKER, 500 CYCLES[SEC.
THE VERTICAL SCALE INDICATES THE POTENTIAL OF
THE INTERNAL ELECTRODE IN MILLIVOLTS, THE SEA
WATER OUTSIDE BEING TAKEN AT ZERO POTENTIAL.

Cole KS, Curtis HJ. ELECTRIC IMPEDANCE OF THE SQUID GIANT
AXON DURING ACTIVITY. J Gen Physiol. 1939

HODGKIN, A., HUXLEY, A. Action Potentials Recorded from Inside
a Nerve Fibre. Nature 144, (1939)

Hodgkin AL & Huxley AF (1952) A Quantitative Description of
Membrane Current and its Application to Conduction and Excitation

in Nerve. J Physiol 117: 500-544.
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A channel can be modelled as a resistance in series with a battery. If there is no difference in
the concentration of the ions (e.g., K*) between inside and outside, the current is due to the
membrane voltage.

Iy =YV
E PF L Where y, is the conductange for a single channel K+



If there is a different in ion concentration, there is an electromotive force Ej given by the

Nerst equation:

E} is represented by a battery in the equivalent circuit.

The net driving force V},, — Ej,

Iy = vk (Vin — Ex)
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Hodgkin-Huxiey (HH) model of the squid axon

In most of the cases, we have N channels and we can rewrite the expression with the total

conductance gg:
9k = NkYk

Iy = gg(Vin — Ex)

=PrL
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In a voltage-clamp experiment, the net current passing through the membrane I, is split into

a capacitive and ionic current:

IM=IC+Ii

Ii=IK+INa+IL

=PrL
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IK =gK(Vm _EK)

kx depends on time and voltage

E P F L * Note that it is mS/cm? which expresses a
density of channels

12



Hodgkin-Huxiey (HH) model of the squid axon

Iy = gV, = Eg)

H.H. supposed that K channels are controlled
by four independent “particles”. Each particle
has a probability n to be in the correct position
to open the channel (permissive). The
probability that all the four particles are in the
permissive state is n*.

8k = gKn4

Jris the maximum condactance

=PrL
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Hodgkin-Huxiey (HH) model of the squid axon

H.H. supposed that the particles are charged, so their distributions in the different states is
voltage-dependent. Each particle moves between its permissive and nonpermissive state

with first order kinetics. The rate constants are voltage-dependent and not time-dependent.

(xn
T v B, i a,,=0-01(V+10)/(expV;“0w—1),
B, =0-125 exp (V/80),
gy ‘
A o, (1-n)-B,n

=PrL
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Hodgkin-Huxiey (HH) model of the squid axon

» At resting membrane potential (RMP or V,;,), beta >> alpha, and particles n

are in nonpermissive state. The conductance is zero, and the channel is

closed.

« Following a depolarization, the rate constant alpha increases in a voltage-
dependent manner, the distribution of particles chances and more particles
N move into a permissive state. The change follows a first-order kinetics.

The effect is the change of the conductance over time.

=PrL
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INa = gNa(Vm - ENa)

Jgna depends on time and voltage

=PrL
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Hodgkin-Huxiey (HH) model of the squid axon

INa = gNa (Vm - ENa)

H.H. supposed that Na channels are controlled
two opposite gating processes: activation and
inactivation. Activation is controlled by three m
particles, while inactivation by one h particle.
The probability that all the four particles are in
the permissive state is m3h (note that h is the
probability that a Na channel is not inactive).

Depolarization

ru_|

1r

n#

Repolarization

HH parameter value

m3

m3h

Time (units of )
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m and h are treated as n of the K channels

%y, =0-1 (V+25)/(expz—i%2—5—l),

Bn=4 exp (V/18),
o, =007 exp (V/20),

V+30
B,,—l/(exp-——l—(—)——-+l).
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m=moo"‘(moo“mo) €xp (_t/'rm)’
h=hoo—(hoo—ho) €xXp (—t/'rh)a
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summary 1

« Hodgkin and Huxley modelled the generation of action potential in the axon
of the giant squid and not in the neuron.
« HH model can be used for simplified neuron models (one compartment),

where we are mainly interested in the generation of action potentials.

« Hodgkin and Huxley considered generic Na and K channels. We now know
that there is a family of Na and K channels with different properties (see

lecture 4).

« They considered not single channels but “populations” of channels (note

that conductance is expressed as mS/cm?)

=PrL
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summary 1

« The HH model fails to capture the role of the different compartments of the
neuron (mainly the dendrites) (see below the example of Mainen et
Sejnowski, 1996) and the variety of the ion channels present in the neurons
with their specific properties and distributions which shape electrical

properties of each cell. This is the subject of the current and next lectures.

« Even though HH model considers only Na and K currents, the HH formalism

can be used for other types of channels.
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Many Ways III Mﬂdﬂllll!l a Neuron

Abstract Model: Point neuron, e.g. Leaky Integrate and Fire

r'.
Vault) AViu (1) _ o, 1<y
- =Cp—p— flD= Vip )]-1
Ry, dt [mf—R Cn lOU( — lRm)] , I > Iy

|
; Simplified Model: Single Compartment and ion channel formalism
! . CmdVin  Em — Vin
f &E_m —%Rm+ ONa Ok dt = R + Ichannels
) linj dm
( T E .I E ia T E —_— = — —
= dh

% = ah(Vm)(l - h) - ﬂh(vm)h

Ichannet = mnhgchannel(vm_Echannel)

7 ' ] A Cellular Model: Cable and ion channel formalism
C040896A-P2 Cdem Em _ Vm

dt = R + Ichannels
2(Vmi+1 sz) ( mi;—1 sz)

R, , + R, R,,_, + R,
Subcellular Model Reaction-Diffusion formalism

M
p(x;t) = —p(x;t) Y au(x)+

p=1

M
Z p(X—sy; t)au(X—syu)

p=1

25
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Cahle Theory of the Dendrites

WA \ P I J
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] IE \; ‘ : . 8 , L
i e \ W N\ Wilfred Rall (1922-2018)

LA
Fic. 1. Diagram illustrating the flow of electric current from a microelectrode

whose tip penetrates the cell body (soma) of a neuron. The full extent of the den-
drites is not shown. The external electrode to which the current flows is at a dis-

tance far beyond the limits of this diagram.

[ I : Rall W (1959) Branching Dendritic Trees and Motoneuron Membrane Resistivity. Exp Neurol 1: 491-527. 6



Dendrite can be considered a cable of
diameter d and length x

The cable can be split into segments
of length Ax

Each segment can be modelled as an
equivalent circuit

I intracellulal, e extracellular, m

membrane (i.e. across the membrane)

=PrL
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* We assume that Ve(x,t) is constant
and we can set it to zero

* We assume that Em or Vrest is
constant. It can be set to zero. V

represents Vm-Vrest

=PrL
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Let’s consider one cable segment




Consider a passive cable

B

With

Membrane time constant: T=r.C,

Steady-state space constant: A=A/,

Linear cable equation:

30



)\.=\/7"m/}"a

Steady-state space constant or simply space constant tells us
how far a given input propagates along the length of the cable.
Space constant is high is the internal medium that does not

oppose much resistance and the “cable” is well isolated.

Membrane time constant tell us home much time is needed to
charge and discharge the membrane. This time is high is there
is a high resistance through the membrane and if we need

much time to charge the “capacitor”

31



2 L
22 Vm(;c,t) s tmavma(;c ) e L e
0x

« We assume that Em or Vrest is constant and can be set to zero for

simplicity. V = Vm-Vrest

« Without injected current, the cable equation takes the compact form:

V. 9V
—=T—+V
ox ot

)\.2

32



Steady-state solutions of the cable equation

= YValit
32 Vg'(f’”ﬂma D (V1) = Vo) = iy 5, )
X

We inject a current li,; in the position x=0 at the time t=0 and it remains on

The voltage changes in time until it arrives to a steady-state. At this point,

we can set the derivative of V over time to zero
,d*V (x)
A 2
dx

One end (x=0) of the cable is clamped at V,

= V(x) — rmlinj(x)

We can solve the equations for several conditions at the other end

=PrL
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Gmensionless EquaticD

V. 9V
Az—z =7T—+V
ox ot

x>
A
T_£
T
PV 9V
=—+V

Steady-state solutions:

= s Clamped to 1.1V,
L » “V(X) _sinh(1-X)+1.1sinh(X)
- sinh(1)

-~ - Vo

L=1, R, at the end

V(X) _ cosh(1-X)
Vo cosh(l)

%

Clamped to OAZVB‘.
L=1 3

¥(X)_ sinh(1-X)

V,  sinh(1) \ 7,

0 A A A

nx)_

Semi-infinite cable — ee—
Sealed end

Openend — — — -
Clamped end == == ==

L=2, R, at the end
cosh(2- X)
cosh(2)




R 4R
e = Area ” nd?
Ry =lr,
Gm = 1/Rp,
7 _ B
™" nd
Ry =1,/
Cm = Cpymd
Cy = Cpnl

total axial resistance (2)
total membrane resistance (€2)
total membrane capacitance (F)

axial resistance per unit length (QQ/cm)
membrane resistance per unit length (2-cm)
membrane capacitance per unit length (F/cm)

intracellular resistivity (€2+cm)
passive membrane resistivity (QQ*m?)

leak conductance (S/cm?)
specific membrane capacitance (F/cm?)

membrane time constant (sec)
membrane space constant (cm)
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It is possible to solve the cable equation for time, at the branching points...
Researches spent efforts to find solutions of the cable equations for
neurons more and more complex

Rall (1962, 1964) found that under certain conditions, it is possible to
reduce a complex morphology into a simple equivalent circuit which can be

more easily solved.

Pi-L .



7 5
3/2 Power Law: dpzzzrent = E ddzzmghter

Terminations all occur at same electrotonic distance

1 L L
0 0.5 1.0 L5

Electrotonic Distance

{
\

L Rall W et al. (1992) Matching Dendritic Neuron Models to Experimental Data. Physiol Rev 72(4):5159-5186.

Rall, 1962
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Exact methods are not scalable

Neurons have complex shape, receive many (synaptic) inputs, and are highly
non-linear

Non steady-state cable solutions are difficult

Necessary assumptions may not hold true

With the advent of computers, the best approach is to use numerical methods
Dendrites are divided into compartments, small patches of neuronal
membranes that are isopotentials

Compartments are then coupled with other methods (see lecture 13)

=PrL .



1 (x-Ax.1) i (x)
Vicaxt) —» Vil - V;(x+Axt)

AT MM AN

R R R R

|, can be replaced with the set of active
currents, such as the ones seen in HH

model

=PrL

A. Characterized Neuron

B. Cable Model

C. Compartmental Model
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Summary 2

« The complex geometry of the circuit can be divided in discrete
compartments and each of them can be represented as an equivalent circuit

* The formalism is similar to the one used in HH model

* The cable equation is a good model for the spatio-temporal behavior of
neurons

40
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Traub, 1977; Traub and Llinas, 1977 S, o

{1} (3) SEGMENT RANVIER
Spinal cord motorneuron
HH equations and cable equation L) e
) MIDDLE SOMA A{g;‘
2/3 power law (Traub and Llinas, 1977) DENDRITES — “a)
Two-step Euler method (lecture 13)
DISTAL DENDRITES MIDDLE DENDRITES PROXIMAL DENDRITES
IBM 370 Model 168 computer | l i l
9% ¢ I 9. G, L s Gor "
T 60m/ ] T 60mvT T 60my 7
1o Y23 Ysa
SOMA
\ p] p / 9na, soma (V) %gk,somu.fast(w%LgK,somu,slkoﬂ/F l g, . (1) /y
(b) \\ I fV ng4 C, inhib
\4{_\ ); HSmVT -5mv ] -5mv [ T 15mv|
\ // MYELINATED Yas
\ // INITIAL SEGMENT AXON NODE OF RANVIER
\\\/r
l\ 95 qnu.JS[v'r) gK,IS(V'” C5J~ gL,S C6‘|‘ gL,7 gnu,node(v")j_/gK,node(v'1)%Cyl
H5mle -5mVT T 115my -5mVT —’—

)/5,6 76,7

a2



Pellionisz and Llinas, 1977

* Frog Purkinje cell Purkinje cell model

« Morphological reconstruction from
Golgi staining

* 62 spatial compartments

« The active and passive properties are
specified independently for each
compartment

« 2/3 power law does not apply

« Euler integration

« PDP15 computer o Tmsec  500uA/cm?

=PrL

43



De Schutter and Bower, 1994

* 10 channel types
1600 compartments

» channels differentially distributed over three
zones (soma, main dendrite, entire dendrite)

 hand-tuned conductances

« two types of spiking behavior

=PrL



Mainen et Sejnowski, 1996

=PrL

Influence of dendritic structure
on firing pattern in model
neocortical neurons

Zachary F. Mainen* & Terrence J. Sejnowski

Howard Hughes Medical Institute, Computational Neurobiology Laboratory,
Salk Institute for Biological Studies, La Jolla, California 92037, and
Department of Biology, University of California, San Diego, La Jolla,
California 92093, USA

NEOCORTICAL neurons display a wide range of dendritic morphol-
ogies, ranging from compact arborizations to highly elaborate
branching patterns'. In vitro electrical recordings from these
neurons have revealed a correspondingly diverse range of intrin-
sic firing patterns, including non-adapting, adapting and burst-
ing types™. This heterogeneity of electrical responsivity has
generally been attributed to variability in the types and densities
of ionic channels. We show here, using compartmental models of
reconstructed cortical neurons, that an entire spectrum of firing
patterns can be reproduced in a set of neurons that share a
common distribution of ion channels and differ only in their
dendritic geometry. The essential behaviour of the model depends
on partial electrical coupling of fast active conductances localized
to the soma and axon and slow active currents located throughout
the dendrites, and can be reproduced in a two-compartment
model. The results suggest a causal relationship for the observed
correlations between dendritic structure and firing properties®™”’
and emphasize the importance of active dendritic conductances
in neuronal function®"’.,

NATURE - VOL 382 - 25 JULY 1996
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Mainen et Sejnowski, 1996

a
FIG. 1 Distinct firing patterns in model neurons with identical channel l
distributions but different dendritic morphology. Digital reconstructions of

dendritic arborizations of neurons from rat somatosensory cortex (a) and

cat visual cortex (b—d). a, Layer 3 aspiny stellate. b, Layer 4 spiny stellate.

¢, Layer 3 pyramid. d, Layer 5 pyramid. Somatic current injection (50, 70, b
100, 200 pA for a—-d, respectively) evoked characteristic firing patterns. a \
shows only the branch lengths and connectivity whereas b—d show a two-

dimensional projection of the three-dimensional reconstruction. Scale

bars: 250 um (anatomy), 100 ms, 25 mV.

All currents were
calculated using conventional Hodgkin—Huxley-style kinetics with an inte- c
gration time step of 250 ps. Current (/) from each channel type was given by
| = ga*b(v — E), where gis the local conductance density, a is an activation
variable with x order kinetics, b is an optional inactivation variable, v is the -
local membrane potential, and E is the reversal potential for the ionic
species (Eo = —70mMV, Ex = -90mV, Ey, =50mV, E., = 140mV).

=PrL



Mainen et Sejnowski, 1996

a b Uncoupled (x—) c Fully coupled (x—0)
dendrite :(;g:‘a/ dendrite P =140 pP=
gleak |
) gNa oNa

FIG. 2 Effects of electrical structure on ¢Ca x
firing pattem in a reduced model. a, A two- gKea U/UUM
compartment model incorporating the oK., gk, "
same channels modelled in Fig. 1. The o L P
two compartments correspond to the - area (dendrite)
dendritic tree (‘dendrite’) and the soma o s Ll M
and axon initial segment (‘axon—-soma’).
The parameter k specifies the electrical d Faitialiyonugled 1% 05 . ity conginll (260
resistance (coupling) between the two S—— dendiite coma/axon dendite

compartments. The parameter p speci-

fies the ratio of dendritic to axo—somatic ‘ l

area and thereby sets the strength of p=140

dendritic currents relative to axo—somatic LV
currents. The channels and membrane

properties of each compartment are
depicted.

P=165

P =200

L Ll

E
3
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Mainen et Sejnowski, 1996

FIG. 4 Electrical geometry of cortical cells. Histograms show the distribution
of electrical attenuation between the soma and dendritic segments for the
four neurons depicted in Fig. 1. The steady-state transfer impedance (2)
from the soma to each simulated dendritric compartment was calculated
by injecting a small current step (/) in the soma and measuring the
resulting (passive) steady-state voltage change (V) in the dendritic
compartment (Z = V/I). The histogram bin corresponding to this impe-
dance level was then incremented by an amount equal to the membrane
area of that compartment. The total area of the histogram therefore reflects
the total dendritic area and the shape of the histogram refiects the relative
electrical distance of the dendritic membrane from the soma. These can be
compared to the parameters p and « in the reduced model, respectively.

Neuron in d has a big dendritic area (big
rho) and a strong attenuation (small k).
Both full and reduced models show
bursting behavior. Same reasoning can be

applied to the other cases.

=PrL
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Mainen et Sejnowski, 1996

* Previously, it was believed that the diversity of observed somatic firing
patterns were mostly due to variability in the types and the densities of ion
channels

« Mainen et Sejnowski showed that an entire spectrum of firing patterns can
result from different dendritic geometry

« Essential behavior depends on partial electrical coupling of fast
conductances in the soma/AlS and slow active currents in the dendrites

=PrL .



Gidon et Segev, 2012

Principles Governing the Operation
of Synaptic Inhibition in Dendrites

Albert Gidon' and Idan Segev'-23*

Department of Neurobiology, Alexander Silberman Institute of Life Sciences
2Interdisciplinary Center for Neural Computation

3The Edmond and Lily Safra Center for Brain Sciences

The Hebrew University of Jerusalem, Jerusalem 91904, Israel
*Correspondence: idan@Ilobster.Is.huji.ac.il
http://dx.doi.org/10.1016/j.neuron.2012.05.015

=PrL
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SUMMARY

Synaptic inhibition plays a key role in shaping the
dynamics of neuronal networks and selecting cell
assemblies. Typically, an inhibitory axon contacts
a particular dendritic subdomain of its target neuron,
where it often makes 10-20 synapses, sometimes on
very distal branches. The functional implications of
such a connectivity pattern are not well understood.
Our experimentally based theoretical study high-
lights several new and counterintuitive principles
for dendritic inhibition. We show that distal “off-
path” rather than proximal “on-path” inhibition
effectively dampens proximal excitable dendritic
“hotspots,” thus powerfully controlling the neuron’s
output. Additionally, with multiple synaptic contacts,
inhibition operates globally, spreading centripetally
hundreds of micrometers from the inhibitory syn-
apses. Consequently, inhibition in regions lacking
inhibitory synapses may exceed that at the synaptic
sites themselves. These results offer new insights
into the synergetic effect of dendritic inhibition in
controlling dendritic excitability and plasticity and
in dynamically molding functional dendritic subdo-
mains and their output.



Gidon et Segev, 2012

E=V
i rest
A Proximal g “‘Hotspot” Distal g, (A) A model of a cylindrical cable (sealed end at L = 1) coupled to an iso-
potential excitable soma. Twenty NMDA synapses are clustered at the hotspot
‘ ‘ located at X = 0.6; each synapse is randomly activated at 20 Hz. A single

inhibitory synapse (g;= 1 nS) is placed either distally or proximally at the same
electrotonic distance (X = 0.4) from the hotspot.

| ——
<—— On-path———>»<«——O0ff-path—>»

50 mV ‘
(B) Inhibition of the somatic Na* spikesis more effective when inhibitionis placed
distally to the hotspot (black synapse and corresponding black somatic spikes,
_— compared to orange synapse and corresponding orange somatic spikes).
300 ms
r\/ N
Figure 1. Off-Path Inhibition Is More Effective than the Correspond-
ing On-Path Inhibition in Dampening a Local Dendritic Hotspot 51



Gidon et Segev, 2012

« The paper derives a counterintuitive principle for dendritic inhibition, namely
that “off-path” inhibition can more effectively dampen proximal excitable
“hotspots” than “on-path” inhibition

« Highlights that inhibition spreads far beyond the actual location of the
inhibitory synapse, giving a new perspective on the "global” reach of
inhibitory connections that are often mediated by 10-20
synapses/connection

« The asymmetry of the impact of distal versus proximal inhibition on location
h (the hotspot) results from the difference in the model’s boundary
conditions, namely, sealed-end boundary at the distal end and an
isopotential soma at the proximal end.

=PrL 52



Summary 3

« The history of modeling the cable properties of neurons is also a history of
computational capability; early models used symmetries to simplify
computation and with more available compute power, more detailed model
could be built

« Those detailed models extend the theoretical insights from early studies of
the cable equation applied to neuronal modeling to more specific and
experimentally-based theoretical insights (e.g. how specific dendrites shape

somatic firing)

« Importantly, even today, many decades after the seminal work of Rall, there
are still fundamental theoretical insights to be made into the cable-equation
formulation of neurons

=PrL
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Lecture Summary

* Neurons are electrically active cells, this electrophysiological behavior
manifests in different forms (e.g. somatic firing, dendritic integration,
extracellular field)

« Depending on what aspects are studied, different formalisms for describing
a neuron’s electrophysiology are available ranging from a biochemical
reaction-diffusion formalism, to a biophysical cable representation to
abstract point neurons

* The cable representation combined with ion channel representations is a
important formalism allowing deep insights into a neuron’s input output
function and its role as a biophysical building block in the brain

« These biophysically detailed models provide a strong link to experiment as
their variables relate to directly measurable observables

=PrL



What you have learn

« HH model. Understand the principles. Remember the fundamental
equations and definition. It is not necessary to remember the equations for
the rate constants.

« Cable equation. Understand the principles. Remember the schema.
Remember the fundamental equations and definition. It is not necessary to
remember the analytical solutions.

* Units.
« 3/2 power law.
« Compartmental model.

* You do not have to remember the details of the papers cited in the section
“applications”. However, try to retain the main points.

=PrL
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« Bertil Hille — lon Channels of Excitable Membranes — Third edition

« Christof Koch — Biophysics of Computation

=PrL
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