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Hodgkin-Huxley (HH) model of the squid axon
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(1) Resting Potential: At rest, 
sodium (Na+) and potassium 
(K+) ions have limited ability 
to pass through the 
membrane, and the neuron 
has a net negative charge 
inside. 

(2) Depolarization: With 
depolarization, sodium 
channels open and sodium 
(Na+) starts to enter the 
cell. Potassium channels 
open and potassium (K+) 
leaves the cell. Depending 
on the voltage, sodium 
dominates and leads to an 
action potential.

(4) Resting Potential:
Voltage-dependent ion 
channels are inactivated 
and Na+ and K+ 
concentrations return to 
their resting distribution

(3) Repolarization: Sodium 
channel close and no more 
sodium (Na+) enters the cell. 
Potassium (K+) continues to 
leave the cell, causing the 
return to the resting potential

With material from wikipedia

Hodgkin-Huxley (HH) model of the squid axon



Hodgkin-Huxley (HH) model of the squid axon

7

𝑉! = 𝑉" − 𝑉#

+
-

A channel can be modelled as a resistance in series with a battery. If there is no difference in 
the concentration of the ions (e.g., K+) between inside and outside, the current is due to the 
membrane voltage.

𝐼$ = 𝛾$𝑉!
Where 𝛾! is the conductange for a single channel K+



Hodgkin-Huxley (HH) model of the squid axon
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If there is a different in ion concentration, there is an electromotive force 𝐸! given by the 
Nerst equation:

𝐸" is represented by a battery in the equivalent circuit.

The net driving force 𝑉# − 𝐸"

𝐼$ = 𝛾$(𝑉! − 𝐸%)



Hodgkin-Huxley (HH) model of the squid axon
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𝐸 = 𝐸" − 𝐸#



Hodgkin-Huxley (HH) model of the squid axon
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In most of the cases, we have N channels and we can rewrite the expression with the total 
conductance 𝑔":

𝐼$ = 𝑔$(𝑉! − 𝐸%)

𝑔$ = 𝑁$𝛾$
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€ 

Ileak = gleak (Vm − Eleak )

Hodgkin-Huxley (HH) model of the squid axon

𝐼& = 𝐶!
𝑑𝑉!
𝑑𝑡

𝐼' = 𝐼& + 𝐼"

𝐼" = 𝐼$ + 𝐼() + 𝐼*

In a voltage-clamp experiment, the net current passing through the membrane 𝐼# is split into 
a capacitive and ionic current:
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€ 

IK = gK (Vm − EK )

Hodgkin-Huxley (HH) model of the squid axon

gK depends on time and voltage

* Note that it is mS/cm2 which expresses a 
density of channels

*
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€ 

IK = gK (Vm − EK )

€ 

gK = g K n4

Hodgkin-Huxley (HH) model of the squid axon

H.H. supposed that K channels are controlled 
by four independent “particles”. Each particle 
has a probability n to be in the correct position 
to open the channel (permissive). The 
probability that all the four particles are in the 
permissive state is n4.

𝑔̅!is the maximum condactance
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Hodgkin-Huxley (HH) model of the squid axon

H.H. supposed that the particles are charged, so their distributions in the different states is 
voltage-dependent. Each particle moves between its permissive and nonpermissive state 
with first order kinetics. The rate constants are voltage-dependent and not time-dependent.
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Hodgkin-Huxley (HH) model of the squid axon
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Hodgkin-Huxley (HH) model of the squid axon
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Hodgkin-Huxley (HH) model of the squid axon
• At resting membrane potential (RMP or Vm), beta >> alpha, and particles n 

are in nonpermissive state. The conductance is zero, and the channel is 
closed.

• Following a depolarization, the rate constant alpha increases in a voltage-
dependent manner, the distribution of particles chances and more particles 

n move into a permissive state. The change follows a first-order kinetics. 
The effect is the change of the conductance over time.
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€ 

INa = gNa (Vm − ENa )

Hodgkin-Huxley (HH) model of the squid axon

gNa depends on time and voltage
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€ 

INa = gNa (Vm − ENa )

€ 

gNa = g Nam3h

Hodgkin-Huxley (HH) model of the squid axon

H.H. supposed that Na channels are controlled 
two opposite gating processes: activation and 
inactivation. Activation is controlled by three m
particles, while inactivation by one h particle. 
The probability that all the four particles are in 
the permissive state is m3h (note that h is the 
probability that a Na channel is not inactive).
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Hodgkin-Huxley (HH) model of the squid axon

m and h are treated as n of the K channels
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Hodgkin-Huxley (HH) model of the squid axon
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• Hodgkin and Huxley modelled the generation of action potential in the axon 

of the giant squid and not in the neuron.

• HH model can be used for simplified neuron models (one compartment), 

where we are mainly interested in the generation of action potentials.

• Hodgkin and Huxley considered generic Na and K channels. We now know 
that there is a family of Na and K channels with different properties (see 
lecture 4).

• They considered not single channels but “populations” of channels (note 
that conductance is expressed as mS/cm2)



Summary 1
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• The HH model fails to capture the role of the different compartments of the 

neuron (mainly the dendrites) (see below the example of Mainen et 
Sejnowski, 1996) and the variety of the ion channels present in the neurons 

with their specific properties and distributions which shape electrical 
properties of each cell. This is the subject of the current and next lectures.

• Even though HH model considers only Na and K currents, the HH formalism 
can be used for other types of channels.
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Simplified Model: Single Compartment and ion channel formalism

E
m

Cm Rm
V
m

ENa

gNa

E
k

gk

I inj

Cellular Model: Cable and ion channel formalism

Subcellular Model: Reaction-Diffusion formalism

Abstract Model: Point neuron, e.g. Leaky Integrate and Fire

Many Ways to Modeling a Neuron



Cable Theory of the Dendrites  
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Wilfred Rall (1922-2018)

Rall W (1959) Branching Dendritic Trees and Motoneuron Membrane Resistivity. Exp Neurol 1: 491-527.



Cable Equation
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• Dendrite can be considered a cable of 

diameter d and length x
• The cable can be split into segments 

of length Δx
• Each segment can be modelled as an 

equivalent circuit

• i intracellulal, e extracellular, m 
membrane (i.e. across the membrane)



Cable Equation
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• We assume that Ve(x,t) is constant 

and we can set it to zero
• We assume that Em or Vrest is 

constant. It can be set to zero. V 
represents Vm-Vrest



Cable Equation
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Let’s consider one cable segment

With Δx → 0 and Vm = Vi

The net current passing through one node is 0



Cable Equation
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Consider a passive cable

Linear cable equation:

With 

Membrane time constant:

Steady-state space constant:

€ 

τ = rmcm

€ 

λ = rm ra



Space and time constants
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Membrane time constant tell us home much time is needed to 
charge and discharge the membrane. This time is high is there 

is a high resistance through the membrane and if we need 

much time to charge the “capacitor”

Steady-state space constant or simply space constant tells us 
how far a given input propagates along the length of the cable. 

Space constant is high is the internal medium that does not 

oppose much resistance and the “cable” is well isolated.

€ 

τ = rmcm
€ 

λ = rm ra



Cable Equation
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• We assume that Em or Vrest is constant and can be set to zero for 

simplicity. V = Vm-Vrest
• Without injected current, the cable equation takes the compact form:

€ 

λ2
∂ 2V
∂x 2

= τ
∂V
∂t

+V



Steady-state solutions of the cable equation
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• We inject a current Iinj in the position x=0 at the time t=0 and it remains on

• The voltage changes in time until it arrives to a steady-state. At this point, 
we can set the derivative of V over time to zero

• One end (x=0) of the cable is clamped at V0

• We can solve the equations for several conditions at the other end



Cable Equation
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Steady-state solutions:

€ 

λ2
∂ 2V
∂x 2

= τ
∂V
∂t

+V

€ 

X =
x
λ

€ 

T =
t
τ

€ 

∂ 2V
∂X 2 =

∂V
∂T

+V

Dimensionless Equation: Clamped to 1.1V0

Clamped to 0.2V0

L=1

L=1, Rm at the end

L=2 , Rm at the end

L=2



Cable Equation Units
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RA total axial resistance (W)
RM total membrane resistance (W)
CM total membrane capacitance (F)

ra axial resistance per unit length (W/cm)
rm membrane resistance per unit length (W‧cm)
cm membrane capacitance per unit length (F/cm)

Ri intracellular resistivity (W‧cm)
Rm passive membrane resistivity (W‧m2)

Gm leak conductance (S/cm2)
Cm specific membrane capacitance (F/cm2)

tm membrane time constant (sec)
l membrane space constant (cm)

𝑟$ =
𝑅%
𝐴𝑟𝑒𝑎 =

4𝑅%
𝜋𝑑&

𝑅' = 𝑙𝑟$

𝐺( = 1/𝑅(

𝑟( =
𝑅(
𝜋𝑑

𝑅# = 𝑟(/𝑙

𝑐( = 𝐶(𝜋𝑑

𝐶# = 𝐶(𝑙



Equivalent cable models
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• It is possible to solve the cable equation for time, at the branching points…

• Researches spent efforts to find solutions of the cable equations for 
neurons more and more complex

• Rall (1962, 1964) found that under certain conditions, it is possible to 
reduce a complex morphology into a simple equivalent circuit which can be 
more easily solved.



Equivalent Cable Models

37Rall W et al. (1992) Matching Dendritic Neuron Models to Experimental Data. Physiol Rev 72(4):S159-S186.  

3/2 Power Law:

€ 

dparent
3
2 = ddaughter

3
2∑

Terminations all occur at same electrotonic distance

Rall, 1962



Compartimental modelling
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• Exact methods are not scalable

• Neurons have complex shape, receive many (synaptic) inputs, and are highly 
non-linear

• Non steady-state cable solutions are difficult
• Necessary assumptions may not hold true
• With the advent of computers, the best approach is to use numerical methods

• Dendrites are divided into compartments, small patches of neuronal 
membranes that are isopotentials

• Compartments are then coupled with other methods (see lecture 13)



Compartimental modelling
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Im can be replaced with the set of active 

currents, such as the ones seen in HH 
model



Summary 2
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• The complex geometry of the circuit can be divided in discrete 
compartments and each of them can be represented as an equivalent circuit

• The formalism is similar to the one used in HH model
• The cable equation is a good model for the spatio-temporal behavior of 

neurons
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Traub, 1977; Traub and Llinas, 1977
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• Spinal cord motorneuron

• HH equations and cable equation

• 2/3 power law (Traub and Llinas, 1977)

• Two-step Euler method (lecture 13)

• IBM 370 Model 168 computer



Pellionisz and Llinas, 1977
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• Frog Purkinje cell
• Morphological reconstruction from 

Golgi staining
• 62 spatial compartments
• The active and passive properties are 

specified independently for each 
compartment

• 2/3 power law does not apply
• Euler integration
• PDP15 computer



De Schutter and Bower, 1994
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• 10 channel types
• 1600 compartments
• channels differentially distributed over three 

zones (soma, main dendrite, entire dendrite)
• hand-tuned conductances
• two types of spiking behavior



Mainen et Sejnowski, 1996
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Mainen et Sejnowski, 1996
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Mainen et Sejnowski, 1996
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Mainen et Sejnowski, 1996
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Neuron in d has a big dendritic area (big 
rho) and a strong attenuation (small k). 

Both full and reduced models show 

bursting behavior. Same reasoning can be 

applied to the other cases.



• Previously, it was believed that the diversity of observed somatic firing 
patterns were mostly due to variability in the types and the densities of ion 
channels

• Mainen et Sejnowski showed that an entire spectrum of firing patterns can 
result from different dendritic geometry

• Essential behavior depends on partial electrical coupling of fast 
conductances in the soma/AIS and slow active currents in the dendrites

Mainen et Sejnowski, 1996
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Gidon et Segev, 2012
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Gidon et Segev, 2012
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• The paper derives a counterintuitive principle for dendritic inhibition, namely 
that “off-path” inhibition can more effectively dampen proximal excitable 
“hotspots” than “on-path” inhibition

• Highlights that inhibition spreads far beyond the actual location of the 
inhibitory synapse, giving a new perspective on the ”global” reach of 
inhibitory connections that are often mediated by 10-20 
synapses/connection

• The asymmetry of the impact of distal versus proximal inhibition on location 
h (the hotspot) results from the difference in the model’s boundary 
conditions, namely, sealed-end boundary at the distal end and an 
isopotential soma at the proximal end.

Gidon et Segev, 2012
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• The history of modeling the cable properties of neurons is also a history of 
computational capability; early models used symmetries to simplify 
computation and with more available compute power, more detailed model 
could be built

• Those detailed models extend the theoretical insights from early studies of 
the cable equation applied to neuronal modeling to more specific and 
experimentally-based theoretical insights (e.g. how specific dendrites shape 
somatic firing)

• Importantly, even today, many decades after the seminal work of Rall, there 
are still fundamental theoretical insights to be made into the cable-equation 
formulation of neurons

Summary 3
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• Neurons are electrically active cells, this electrophysiological behavior 
manifests in different forms (e.g. somatic firing, dendritic integration, 
extracellular field)

• Depending on what aspects are studied, different formalisms for describing 
a neuron’s electrophysiology are available ranging from a biochemical 
reaction-diffusion formalism, to a biophysical cable representation to 
abstract point neurons

• The cable representation combined with ion channel representations is a 
important formalism allowing deep insights into a neuron’s input output 
function and its role as a biophysical building block in the brain

• These biophysically detailed models provide a strong link to experiment as 
their variables relate to directly measurable observables

Lecture Summary
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• HH model. Understand the principles. Remember the fundamental 
equations and definition. It is not necessary to remember the equations for 
the rate constants.

• Cable equation. Understand the principles. Remember the schema. 
Remember the fundamental equations and definition. It is not necessary to 
remember the analytical solutions.

• Units.
• 3/2 power law.
• Compartmental model.
• You do not have to remember the details of the papers cited in the section 

“applications”. However, try to retain the main points.

What you have learn
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• Bertil Hille – Ion Channels of Excitable Membranes – Third edition
• Christof Koch – Biophysics of Computation
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